Determination of the metal ion dependence and substrate specificity of a hydratase involved in the degradation pathway of biphenyl/chlorobiphenyl.
نویسندگان
چکیده
BphH is a divalent metal ion-dependent hydratase that catalyzes the formation of 2-keto-4-hydroxypentanoate from 2-hydroxypent-2,4-dienoate (HPDA). This reaction lies on the catabolic pathway of numerous aromatics, including the significant environmental pollutant, polychlorinated biphenyls (PCBs). BphH from the PCB degrading bacterium, Burkholderia xenoverans LB400, was overexpressed and purified to homogeneity. Atomic absorption spectroscopy and Scatchard analysis reveal that only one divalent metal ion is bound to each enzyme subunit. The enzyme exhibits the highest activity when Mg2+ was used as cofactor. Other divalent cations activate the enzyme in the following order of effectiveness: Mg2+ > Mn2+ > Co2+ > Zn2+ > Ca2+. This differs from the metal activation profile of the homologous hydratase, MhpD. UV-visible spectroscopy of the Co2+-BphH complex indicates that the divalent metal ion is hexa-coordinated in the enzyme. The nature of the metal ion affected only the kcat and not the Km values in the BphH hydration of HPDA, suggesting that cation has a catalytic rather than just a substrate binding role. BphH is able to transform alternative substrates substituted with methyl- and chlorine groups at the 5-position of HPDA. The specificity constants (kcat/Km) for 5-methyl and 5-chloro substrates are, however, lowered by eight- and 67-fold compared with the unsubstituted substrate. Significantly, kcat for the chloro-substituted substrate is eightfold lower compared with the methyl-substituted substrate, showing that electron withdrawing substituent at the 5-position of the substrate has a negative influence on enzyme catalysis.
منابع مشابه
MOLECULAR WEIGHT DETERMINATION AND METAL ION REQUIREMENT OF PHOSPHATIDATE PHOSPHOHYDROLASE PURIFIED FROM CYTOSOLIC FRACTION OF RAT LIVER
Phosphatidate phosphohydrolase (PAP) from cytosolic fraction of rat liver was purified to homogeneity having specific activity of 5.14 U/mg protein. An activity staining procedure was developed to determine molecular weight of the enzyme on polyacrylamide gel electrophoresis using Ferguson plot. Molecular Weight (M.W.) of the active PAP was 298 KDa. SDS-PAGE analysis showed a M.W. of 47 KDa for...
متن کاملMultiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1.
A gram-positive strong polychlorinated biphenyl (PCB) degrader, Rhodococcus sp. strain RHA1, can degrade PCBs by cometabolism with biphenyl or ethylbenzene. In RHA1, three sets of aromatic-ring-hydroxylating dioxygenase genes are induced by biphenyl. The large and small subunits of their terminal dioxygenase components are encoded by bphA1 and bphA2, etbA1 and etbA2, and ebdA1 and ebdA2, respec...
متن کاملCharacterization of two biphenyl dioxygenases for biphenyl/PCB degradation in A PCB degrader, Rhodococcus sp. strain RHA1.
Rhodococcus sp. RHA1 induces two biphenyl dioxygenases, the BphA and EtbA/EbdA dioxygenases, during growth on biphenyl. Their subunit genes were expressed in R. erythropolis IAM1399 to investigate the involvement of each subunit gene in their activity and their substrate preferences. The recombinant expressing ebdA1A2A3etbA4 and that expressing bphA1A2A3A4 exhibited 4-chlorobiphenyl (4-CB) tran...
متن کاملSpectrophotometric Study of Stability Constants of Metal Complexes of Promethazine at Different Temperatures
The complexation reactions between Cu2+, Pd2+ and Ni2+ metal ions with promethazine (PM) in water or DMF were studied by the spectrophotometric methods at [(15, 25,35 and 45±0.1) °C]. The complexation process was optimized in terms of pH, temperature and contact time. The stoichiometry of the complex was found to be 1:1 (metal ion/ligand). The formation constants of the resulting complexes were...
متن کاملOptimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A
There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The FEBS journal
دوره 272 4 شماره
صفحات -
تاریخ انتشار 2005